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N U M E R I C A L  M O D E L I N G  OF T H E  F O R M I N G  OF F I B E R  B U N D L E S  

F R O M  P O L Y M E R  MELTS 

V. I. Eliseev,  Yu. P. Sovit,  and L. A. Fleer UDC 536.24 

A mathematical model for the process of forming of synthetic fibers moving as a bundle is 
formulated. Three main versions are considered: forming of exposed bundles, forming in shafts 
with blowing, and stretching of fibers by means o fan  ejector. Low and high-speed forming regimes 
are also considered within the framework of the Maxwell model of a viscoelastic fluid. The 
calculations performed showed that the parameters of the fiber bundle produced depend on the 
method of forming used and on the local conditions in high-speed stretching, accompanied by 
oriented crystallization. 

I n t r oduc t i on .  The theoretical problems of the forming of single fibers have been widely covered in 
the literature. The main equations of motion of fibers within the framework of the Newtonian fluid model 
and the equations of heat exchange between the fibers and the medium were formulated for the first time in 
[1, 2]. More general equations for nonlinearly viscous fluids are derived by Entov and Yarin [3, 4]. Models of 
viscoelastic fluids were also used in studies of high-speed forming [5]. In [1, 2, 6-9], the equations obtained 
were used to perform numerical simulation of the process of stretching of single fibers for different schemes of 
forming and the main regularities of the process were established. 

The main feature of the forming of fiber bundles is the hydrodynamic and thermal interaction of 
elementary fibers in the bundle. The process of forming of each filament depends on the location of the 
filament in the bundle and the "conditions of interaction of the bundle with the medium. The calculations and 
experiments of [10, 11] show that during forming, a thermally and hydrodynamically stabilized flow region 
appears in the bundle. This region is in quasiequilibrium with the surrounding fibers and shows considerable 
conservatism with respect to external conditions (effects). Therefore, at the end of the forming zone, there 
is a marked difference in the parameters of separate fibers. In the present work, a mathematical model for 
process of forming of a fiber bundle is constructed and the main regularities of the process and the parameters 
of newly formed fibers are determined numerically. 

1. Fo rmula t ion  of t he  P rob l em.  The problem of forming of a fiber bundle consists of two groups 
of equations: the equations of motion and heat exchange between the bundle and the ambient medium and 
the equations of motion and heat exchange between elementary fibers with some determining parameters 
describing the process. 

The first group includes the equations of convective heat exchange, [11, 12], which have the form 

( OUl OUl~ dp 0 (rOUl'~ O(rul) O(rVl) 
g--1 Ul_~_Z _t_Vl_~.r]=_gp_~z.t_RV.l_/}r_~r~ Or] '  6q-------~- F O-----~- -- 0; (1.1) 

e_lpc(ux 07'1 OT~'~ --e-~RT A 0 ( OT~'~, (1.2) 

where (z, r) are cylindrical coordinates, ul and vl are the velocity components of the gas in the bundle in the 
x and r direction, 7'1 is the gas temperature, p is the density, p is the pressure, e is the porosity of the bundle 
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[e = 1 - (rf/rA)2], v is the kinematic viscosity, c is the specific heat, and A is the thermal conductivity. The 
parameters Ru and RT characterize the force and thermal interaction between the gas and the fiber: 

R v  = ( D I S ) n ,  RT = (OlS)qf .  

Here D = 21rrf, S = lrr 2, rf is the radius of a fiber, ra = RpN -1/2 is the radius of a cell, Rp is the radius of 
the bundle, N is the number of fibers, and rf and qf are the friction and heat flux on the surface of a fiber. 
The analytical expressions for rf and qf use the model of cells and the method of successive approximations. 
For gradient flow, the expression for rf and qf in the first approximation have the form 

/~(~Uf-u , )  - [ 1 - ~  eB ] r2A ddPx ' 
rf = rf(X -- B ) l n ( r a / r f )  2(f-- B)j  

A ul(Tf - T1) (1.3) 
qf -- rf In (rA/rf) Uf(l - B) + (Ul - gUf)r "{" Bp(Cl - e2c0/2) ' 

l n ( r A I r f ) -  1 + B B -  1 ~ ~ r 2 dp 
= ( l _  B) cx = B =  21n(  l f), B p =  d- 7 .  

The flow instability in a cell is taken into account by corrections of the second approximation. The 
expressions for rf and qf in the second approximation are not given since they are cumbersome. Equations (1.1) 
and (1.2) describe the gas flow and the heat exchange in the fiber bundle, and for e = 1 and Ru = R r  = 0, they 
describe the external region. Below, the superscript 2 refers to the flow parameters of the ambient medium. 
The interaction of the flows in the bundle and the ambient region is taken into account by the equalities of 
velocities, temperatures, friction stresses, and heat fluxes on the boundary of the bundle (at r = Rp), which, 
within the framework of the boundary-layer model [11, 13], have the form 

Ou~. Oul A OT~ OT1 (1.4) 
tL2-----.e-lul, V2----~Vl, T2 = T1, p "~'r = p -~r , "~-r = eA Or �9 

Expressions (1.4) must be supplemented by symmetry conditions on the axis of the bundle. For an 
exposed bundle, conditions for the external flow at infinity or conditions on the channel wall should be added. 
The equations of the second group, formulated in [14] using the mathematical model developed in [15], can 
be written as 

dUf d 
Q dx = d"~ (Aaf) - 27rrfT-f; (1.5) 

dUf Uf do" f 
~  = - - f f  ; ( 1 . 6 )  

dTf Q H dO / dUf ~ 2 
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dO 
Uf -~z = K T K A ( O .  - 0) ,  (1.8) 

where Uf and Tf are the velocity and temperature of the fibers, cf is the specific heat of the polymer, A is the 
cross-sectional area of a fiber, Q is the flow rate of the polymer through the spinneret, (rf is the stress, G is 
the degree of crystallinity, O. is the degree of crystallinity in the equilibrium state, H is the latent heat of 
crystallization, G is the shear modulus, qr = ~fa(Tf 4 -Too4), a is Boltzmann's constant, ef is the emissivity of 
the surface of a fiber, Too is the temperature of the medium at infinity, and KT and K a  are coefficients. Since 
the fiber bundle is a rather rarefied porous body, in calculations of radiation flows from the fiber surfaces, we 
shall ignore their mutual interaction. 

Equation (1.5) is the equation of motion for a single thin fiber, Eq. (1.6) is the rheological equation of 
the fluid [15], Eq. (1.7) is the equation of heat exchange, and Eq. (1.8) is the phenomenological equation of 
crystallization, which corresponds to the Avrami equation with the exponent equal to unity. This choice of the 
exponent is based on theoretical and experimental studies of oriented crystallization [15-17]. The coefficient 
KT depends only on temperature and determines the rate of crystallization in processes without stretching, 
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the coefficient KA depends on the birefringence parameter (BRP), and the coefficient An depends on the 
degree of stretching of the fiber and the molecular orientation of the polymer. According to [15], the BRP 
depends linearly on the internal stresses trf when the latter are low: 

An = reef. (1.9) 

System (1.1)-(1.9) is closed and completely determines the process of stretching of fibers from polymer 
melts with allowance for oriented crystallization. The system of equations of motion and heat exchange of the 
fibers (1.5)-(1.9) adequately describes the physical processes in the fiber, in particular, crystallization of the 
polymer during stretching of the fibers through the spinneret, which is essential to formation of the physical 
characteristics of the fibers. 

The process of forming of fibers is conditionally divided into low and high-speed processes, depending 
on the rate of crystallization. High-speed forming typically produces fibers with high degrees of orientation of 
molecules and crystallinity. The occurrence of a local strain (neck) plays a special role in high-speed forming. 
The conditions of formation and development of a neck attracted the attention of researchers and was the 
subject of extensive research, for example, [6, 15]. In particular, in [15], various physical models are given 
and equations are formulated on the basis of kinetic and phenomenological concepts. One of these models, 
which is, in our opinion, the most complete, is described in the present paper. It can be used for a qualitative 
investigation of high-speed forming of fibers from polyethylene terephthalate (PETPH). 

The experimental studies of [16-18] show that at low speeds of forming, PETPH has a low rate of 
crystallization with the formation of complex morphological modifications - -  crystallites [19]. High-speed 
forming (Uf ,-, 90-100 m/see) gives rise to other structures [20, 21], which lead to strengthening of fibers. The 
degree of crystallinity in this case is about 0.4 and higher. Under such conditions, forming can be accompanied 
by the appearance of a neck in the region of fibers with low temperature. For this, as shown by the results of 
[15] and our calculations of forming of a single fiber, rather intensive cooling and high stress are required. 

In forming of fiber bundles without using additional means of cooling (installation of blowers) thermal 
shielding results in different (from those for a single fiber) local conditions, which can substantially influence 
the orientation of molecular chains in the polymer. This model is intended to describe the main regularities 
of low-speed forming and to determine the possibilities of numerical simulation of the process of production 
of fibers with a high degree of orientation and crystallinity. 

2. Ca lcu la t ion  Resul ts .  Numerical simulation of the forming process is performed for three basic 
schemes of forming: in an open space without using blowers, in a shaft with blowing, and forming with 
stretching by an ejector. Calculations are performed for the following values of the determining parameters: the 
polymer density p~ = 1356-0.5Tf kg/m 3, c~ = 1260+2.52T~ J/(kg.K),  H = 121 J/kg, G = 108 Pa, O. = 0.4, 
er = 1, the initial radius of the bundle Rp = 0.05 m, the length of the forming zone L = 2 m; the longitudinal 
viscosity for PETPH was determined from the relation [15] ~ = 0.725 exp [5260.0/(Tf + 273)](1 + 99 O). 

B u n d l e  in an Open  Space.  In forming of a fiber bundle in an open space, the ambient medium can 
be considered immovable. As a result, the boundary conditions for the equations of motion and heat exchange 
(1.1), (1.2) at infinity have the form u2(oo) = 0 and 7'2(oo) = Too (in the calculations, the temperature Too 
was assumed to be equal to 20~ 

The problem of forming now is closed by the boundary conditions for the fibers, which, for a receiving 
device such as a roller rotating at constant rate, have the form 

Uf(0) = Uf0, Tf(0) = Tf0, rf(0) = rf0 , Uf(L) = UL, (2.1) 

where the parameters with the subscript 0 are determined by the conditions on the spinneret, and UL is rate 
of forming, which depends on the receiving device. 

For Eq. (1.5), the boundary condition is specified at the end of the forming zone. This complicates 
the solution of Eqs. (1.1)-(1.9) since Cauchy problems are formulated for the stress, temperature, and degree 
of crystallinity of the fiber, and Eqs. (1.1) and (1.2) are parabolic equations. For the solution of boundary- 
value p:oblem (1.5), (2.1), an iterative sequence of solutions of the Cauchy problems is constructed. As the 
iterative parameter we use the rheological force applied to the fiber at the cross section of the spinneret 
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Fig. 1 

z = 0. The iterative procedure of solution is as follows: the initial value of the rheological force Im~0 [the 
rheological force tmr = A~rf and Fro = Fr(0)] is assigned; for this value of FrO, the problem of forming of a fiber 
bundle (1.1)-(1.9) is solved; the velocities of the fibers at the end of the forming zone (uL)i are evaluated. If 
[ (uL) i /UL - II > ce (i is the iteration number and c~ is the specified error of calculations), the value of Fro 
is adjusted and the iterative process is repeated. If I (uL) i /UL -- 11 < a, the repetitive process is completed. 
As calculations show, the number of iterations depends greatly on both the method of adjusting the value of 
the theological force Fro and on the features of the forming process. Thus, when the parameters of the outer 
and inner fibers differ greatly, for example, in forming of exposed bundles, the number of iterations required 
to attain the specified accuracy increases considerably. The average number of iterative cycles in calculations 
of the forming of an exposed bundle is about 50-60, and in forming in a shaft, it is 10-20. 

Figure 1 shows curves of the velocity C/f, temperature Tf, and degree of crystallinity e of the fibers 
located on the s axis (solid curves), at half the radius w (dashed curves), and on the surface p of the bundle 
(dot-and-dashed curves). In the calculations, we used the following values: r = 0.5 m/sec, Tf0 = 295~ and 
rf0 = 0.000125 and 0.00015 m (Fig. la  and b, respectively). The number of fibers in the bundle A r = 100, 
and the coefficient m is taken to be equal to 2.5 �9 10 -9. It is obvious that for such parameters, the fibers of 
the bundle have different temperatures. As a result, the velocity of stretching of peripheral fibers with lower 
temperature grows faster than the velocity of inner fibers. This indicates that the thrust force exerted by the 
receiving device to the outer fibers is higher, and as a result, these fibers are in a more stressed state. However, 
crystallization proceeds only in fibers located in close proximity to the axis of the bundle. Qualitatively, the 
curves of the velocity and temperatures of fibers in the central part of the bundle differ only slightly, and 
jumps of temperature on these fibers can be clearly seen at the end of the forming zone. This is due to the 
fact that the degree of crystallinity O of such fibers rapidly reaches the equilibrium value O. = 0.4. The 
temperature of the fibers located on the surface of the bundle also undergoes a noticeable but fairly smooth 
rise at the end of the zone. This variation in the temperature is due not to the crystallization process in these 
fibers but to the fact that in a converging bundle, the outer fibers, while moving, fall in the region with a high 
temperature of the gas, which is in a quasiequilibrium state with the central fibers. The rise of the temperature 
of the fibers moving at half the radius of the bundle is observed at the end of the region considered. This is 
caused by both a decrease in the radius of the bundle and the beginning of orientated crystallization, which, 
in the scale of the figure, has not yet reached a marked value. 

B u n d l e  in a Shaf t  w i t h  Blowing.  Forming in a shaft is accompanied by the supply of cooling air, 
which, together with the fiber bundle, moves along a channel of radius Rch. On the wall of the shaft we assign 
u2(Rch) = 0, T2(Rch) = T,,, and v2(Rch) = 0, and the temperature on the channel wall Tw is assumed to be 
equal to 20~ Boundary conditions (2.1) must be supplemented by the gas flow rate in the shaft. In our case 
(a simplified flow pattern), the velocity of air at the initial cross section is considered constant and equal to 
4 m/sec, the initial conditions are the same as in the previous case, and the number of fibers N = 100. 
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Figure 2a gives curves of the velocities and temperatures for fibers on the axis of the bundle for three 
versions of calculation: rf0 = 0.000125 m and UL = 70 m/sec (curves 1), rf0 = 0.00015 m and UL = 70 m/sec 
(curves 2), and rf0 = 0.000125 m and UL = 95 m/sec (curves 3). The spread of the fiber temperatures in 
the bundle is small, and, therefore, the velocities of the fibers located inside the bundle and on its surface 
differ only slightly (in the scale of the figure) from the velocities of the fibers on the axis of the bundle. From 
the calculation it follows that cooling of fibers in the shaft is more rapid and the temperature field is more 
uniform than in the previous case. It is obvious that in blowing shafts, the fibers are more uniform in their 
parameters, which is also confirmed by practice. 

Curves 1 and 2 in Fig. 2 refer to results of a numerical simulation of low-speed forming. In this case, 
the temperature of fibers decreases smoothly, but for a thicker fiber, the temperature curve 2 is slightly above 
curve 1. The velocity curve for thicker fibers is under curve 1, which refers to thin fibers cooled at higher rate. 
Curves 3 correspond to a rather high speed of stretching of fibers, but the fiber temperature decreases rapidly 
and the fibers are not able to crystallize in this interval of motion. 

A different picture is observed in forming of thicker fibers. Figure 2b shows (here and below, the 
notation of the curves is the same as in Fig. 1) curves of the velocity, temperature, and degree of crystallinity 
for rf0 = 0.00015 and Uz, = 95 m/sec. Since, in this case, the temperature of fibers decreases more slowly, the 
fibers are under conditions that favor fast crystallization of the polymer. The abrupt jumps of temperature 
at the end of the forming zone and sharp rises in the degree of crystallinity can be clearly seen. An important 
feature of the process considered, as compared to the process for a rapidly cooled single fiber [15], is that in both 
exposed bundles and bundles moving in a shaft, crystallization proceeds at higher temperatures and, according 
to experimental results, at rather low values of the BRP An (in our calculations for low-temperature stretching 
of a single fiber, the BR.P reached values of about 0.08-0.1, and, for the cases considered, Art ,,- 0.03-0.04). 
It should be noted that,  despite the slight difference in temperature and velocity between the central and 
peripheral fibers before crystallization, the process of oriented crystallization begins at different distances from 
the spinneret and results in layering of the curves. This indicates the high sensitivity of oriented crystallization 
to the forming conditions. 

A e r o d y n a m i c  Fo rming .  In contrast to the two previous schemes, in which the speed of stretching of 
fibers is specified, the forming in this case is implemented by means of an ejector. The technological, physical, 
and mathematical aspects of the problem were studied in a number of papers, for example [9, 22-24], where 
the features of aerodynamic forming are considered, a mathematical formulation of the problem is given, and 
the main regularities are established. Analysis of the problem shows that the boundary condition for the fiber 
at the end of the forming zone is the equality Fr = Ff,, where Fr = Fi + Ff  + Fro is the rheological force 
acting on the jet directly ahead of the ejector, Fro is the rheological force in the cross section of the spinneret, 
Fi is the force of inertia, Ff is the force of friction a fiber in the medium, and Ff, is the force of friction 
of the fiber in the ejector. Ignoring the direct interaction of the fibers with each other and with the wall 
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at random contacts, we can write the expression for Ffr as [15] Ffr = 27rrflpcl(U[r - Uf) 2, cf = 0.5 Re -~ 
Re = 2rf(Utr - Ut) / v  (l is the length of the ejector). It is also assumea that, according to [9], because of rapid 
cooling, the radius of a fiber in the ejector varies only slightly, owing to which it can be considered constant. 

Figure 3 shows the velocity and temperature distributions for fibers in exposed bundles formed by 
means of an ejector of length I = 20 cm in which the gas velocity is U~ = 200 m/sec; the calculations were 
performed for N = 100, rf0 = 0.000125 m (Fig. 3a), and rm = 0.00015 m (Fig. 3b). From the figure it 
follows that when the fibers move, the temperature of inner fibers decreases smoothly and reaches a local 
level that is in quasiequilibrium with the medium. As in the problem for an exposed bundle, a characteristic 
feature of this problem is the considerable difference in temperature between surface and inner fibers. Since 
the temperature of outer fibers is well below that of the central fibers, the velocity of the outer fibers at the 
ejector is approximately twice lower than the velocity of hot fibers. The small bend of the velocity curves for 
the outer fibers observed in Fig. 3 is caused by the increase in their temperature due to entry into the hot 
gas region. 

In conclusion, the following should be noted. The mathematical model constructed makes it possible 
to calculate the processes of forming of bundles of fibers under different conditions. The solutions obtained 
showed the qualitative regularities of the motion and temperature distribution of the fibers formed. The 
calculation of low-speed forming does not involve considerable mathematical difficulties. Equations (1.1)-(1.9) 
are solved numerically by the method developed in [25] using the Crank-Nicholson finite-difference scheme. 
The convergence of the solutions with an appropriate choice of the initial conditions indicates stability of 
the adopted iterative process. The dependence of the final parameters of the fibers on the parameters of the 
mathematical model can be significant, but it is well controllable during solution. 

For high-speed forming, which involves a change in the molecular structure, accompanied by high 
dynamic and temperature stresses resulting in jumps of temperature and local elongations, the computations 
become more difficult. In this case, use of the extrapolation method of [26] to integrate the one-dimensional 
equations (1.5)-(1.9) simplifies the solution considerably. It is worth noting, however, that the model of 
orientated crystallization of [15], in the opinion of its authors, has a qualitative nature and requires further 
studies. Our calculations of the forming of both single fibers and bundles indicate that the process of oriented 
crystallization is extremely sensitive to external conditions (see Fig. 2b) and to some parameters of the 
mathematical model. According to this, the model should be refined using results of experiments with careful 
observance of experimental conditions in order to provide quantitative agreement with real values. 
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